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Abstract

Recently, calendar spread futures, futures contracts whose underlying asset is the differ
two futures contracts with different delivery dates, have been successfully introduced for a n
of financial futures contracts traded on the Chicago Board of Trade. A spread futures contrac
an obvious financial innovation, as it is a derivative on a derivative security: a spread futures p
can be replicated by taking positions in the two underlying futures contracts, both of which
already be quite liquid. This paper provides a motivation for this innovation, demonstrating ho
introduction of spread futures can, by changing the relative trading patterns of hedgers and in
traders, affect equilibrium bid–ask spreads, improve hedger welfare, and potentially improve m
maker expected profits. These results are robust both to allowing serial correlation of ass
changes, and investor preference for skewness.
 2005 Elsevier Inc. All rights reserved.

JEL classification: G13; G11

1. Introduction

In January 2001, Alliance/CBOT/Eurex (a/c/e), a joint venture of the Chicago B
of Trade and Eurex futures exchanges, began trading four separate reduced tick
futures contracts. The underlying asset for these futures is a calendar spread positio
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two otherwise identical CBOT futures contracts with adjacent delivery dates. Thus,
spread futures contracts are redundant securities in the sense that the contract es
consists of a long position in one futures contract, and a short position in another f
contract, with the two legs of the spread differing only in their delivery dates. In fact,
entered into, the spread futures contract is treated by the exchange exactly the sa
the two legs of the spread had been entered into separately.

In another, narrower sense, reduced tick spread futures are perhaps not totally
dant: as implied by the name, these spread futures have a smaller allowed tick size t
associated primary futures contract, and thus can trade at prices unavailable by
trading the associated long and short futures positions.1 Additional institutional detai
about available reduced tick spread futures contracts is provided in Section3.

Since spread futures contracts are redundant in the sense that the underlying sp
be straightforwardly traded on other futures markets, it is not immediately clear wh
particular financial innovation should be successful. Indeed, not only are spread f
contracts a derivative of other derivatives, the two underlying futures contracts co
ing the calendar spread, but the particular spread futures introduced to date are b
very liquid futures contracts. Why are these apparently redundant contracts observe
paper addresses this question and suggests that this security changes the trading
and welfare of hedgers in such a way as to make this innovation potentially attractiv
futures exchange.

A model is provided to show how the structure of the transaction costs in the fu
market, modeled in the form of bid–ask spreads, is changed by the introduction o
endar spread futures. Futures markets exist in the model to service hedging dem
approach traceable toWorking (1953). Also present are informed traders. Market-mak
provide the market with liquidity, which is costly due to the adverse selection of fa
informed traders. Market-makers are compensated through charging a bid–ask sp
trades. With competitive market-makers, bid–ask spreads in each contract are se
cover the adverse selection cost faced by market-makers in that contract. Howeve
cost of trading a calendar spread is lower in the spread futures than the primary
market, then hedgers’ trades will partially migrate to the spread futures market, le
informed trading in the primary market. Furthermore, if the overall cost of implem
ing hedges falls, additional hedging interest may arise in the primary market. Introd
spread futures thus allows partial separation of hedging and informed trading. Trad
the spread futures market is concentrated in hedging, and therefore supports a low
ask spread.

A similar result is obtained if bid–ask spreads are set by an exchange exercising
power in order to maximize aggregate market-maker profit. With these “monopo
bid–ask spreads, it is optimal to lower the bid–ask spread in the calendar spread f
attracting hedgers, while raising the bid–ask spread in the primary market. This
price discrimination between hedgers and informed traders. Informed traders face
trading costs and reduce their activity, moderating the adverse selection problem

1 Of course, if reducing the tick size is the primary innovation associated with these spread futures, on
ask why not instead reduce the tick size on the underlying CBOT futures contracts. This paper shows th
ducing spread futures leads to quite different results than reducing the tick size.
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by the market-makers. The lower bid–ask spread in the spread futures market effe
subsidizes hedgers, keeping their overall trading cost relatively low in order to gener
hedging trades that market-makers find profitable.

To implement either such equilibrium, featuring a smaller bid–ask spread in the s
futures, requires a finer pricing structure, or reduced tick size, in the spread futures r
to the primary contract. Even without the presence of the spread futures, a trader co
principle, negotiate both legs of the calendar spread simultaneously in the futures m
However, the possible prices at which the legs can be negotiated are constrained
tick size. By allowing a smaller tick size, the presence of the spread futures market
a finer set of possible prices, and therefore a smaller bid–ask spread (lower tran
cost) in trading the calendar spread.

The paper is organized as follows. Section2 provides a literature review. Section3 pro-
vides institutional detail about reduced tick spread futures. Section4 describes the mode
and includes results about bid–ask spreads, hedger volume, and hedger welfare, for
cases of competitive and monopolistic bid–ask spreads. Three extensions are consi
Section5, serial correlation of underlying asset price changes, hedger wealth prefe
reflecting skewness, and whether the model should apply to the trading of calendar s
on options. Section6 concludes.

2. Literature review

Excellent overviews of the literature on financial innovation are provided inAllen and
Gale (1994)andDuffie and Rahi (1995). Specific cases of innovations of futures contra
are discussed inWorking (1953), Gray (1970), Sandor (1973), Silber (1981), andJohnston
and McConnell (1989).

This paper reaches the conclusion that the introduction of spread futures, which a
to be a redundant security, can change trading patterns and hedger welfare. In the
literature, there is evidence that options may not be truly redundant.Conrad (1989)finds a
significantly positive (two percent) abnormal stock return accompanying the introdu
of stock option trading for listings from 1974 and 1980.Detemple and Jorion (1990)find
similar abnormal stock returns for listings from 1973 to 1982, but no significant e
for listings from 1982 to 1986.Back (1993)models a market where an option can
synthesized via dynamic trading, thus appearing to be redundant, but the option’s ex
affects the information flow, making the underlying asset volatility stochastic.Longstaff
(1995), for the case of S & P 100 index options, rejects the martingale restriction
the value of the underlying asset implied by the cross-section of options prices e
its actual market value, finding that the difference in value is related to market fric
If markets are dynamically complete and options are redundant assets, then any
payoff can be replicated using the underlying asset and one additional option.Buraschi
and Jackwerth (2001)perform this direct test, concluding that at-the-money S & P
index options and the underlying index do not span the pricing space; consequen
options are not redundant securities.Bakshi et al. (2000)conclude that index options a
not redundant assets, as the index level and associated call option prices often m
opposite directions.
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There is also a literature on how the introduction of futures contracts may affect th
derlying asset markets. A comprehensive summary of this literature is inMayhew (2000).
One related paper isSubrahmanyam (1991), which provides an information-based mod
for stock-index futures (“basket trading”), extendingKyle’s (1984)model to allow simul-
taneous trading of individual stocks and baskets of stocks. With the introduction of b
trading, uninformed traders tend to trade the basket to protect themselves from
formed traders, who tend to trade individual stocks since their information is stock-sp
Thus, the model predicts liquidity will migrate from the markets for individual stock
the basket.

3. Institutional detail

This section provides some specific detail about the currently traded reduced tick
futures contracts. These futures contracts are traded exclusively on the a/c/e electron
ing platform, while their clearing is through the CBOT system. The underlying ass
these futures is a calendar spread position across two otherwise identical CBOT
contracts with adjacent delivery dates: one long futures position and one short futur
sition, with the two legs of the spread differing only in their delivery dates.

As an example of a traded reduced tick spread future, the March 10-year US Tr
Note Futures Reduced Tick Spread futures contract has a trading unit that consists
March–June Ten-year US Treasury Note futures spread having a face value at m
of $100,000 or multiple thereof.”2 Taking a long position in this spread futures contr
immediately gives the trader a long position in the CBOT June 10-year US Treasury
futures, and a short position in the CBOT March 10-year US Treasury Note futures,
if these two positions were entered into directly, but separately, through the CBOT Tre
Note futures markets. Thus, for clearing purposes, a trade executed in a spread
contract is recognized as being exactly the same as two trades in the futures co
corresponding to the legs of the calendar spread.

Although the tick size of the CBOT 10-year US Treasury Note futures contract is
half of 1/32 of a point, the tick size of the associated a/c/e Reduced Tick Spread f
contract is smaller, one-quarter of 1/32 of a point. Similarly, the tick size for the CBO
5-year Treasury Note and (both 10-year and 5-year) Agency Note futures contracts
half of 1/32 of one point. The tick size for the CBOT Treasury Bond and Interest
Swap (both 10-year and 5-year) futures contracts is 1/32 of one point. The tick size o
all the associated reduced tick spread futures is one-quarter of 1/32 of one point. Thus
the tick size for each spread futures contract is one-half or one-quarter the tick size
associated futures contracts.

Because the spread futures contract price reflects the price differential between
tures contracts differing only in delivery date, one naturally expects the spread future
to be much smaller than the price of either leg of the underlying spread. In light of
implementing the reduced tick pricing may seem quite natural. Furthermore, the s

2 Language taken from the description on the Chicago Board of Trade websitehttp://www.cbot.com.

http://www.cbot.com
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differential may even carry a negative price, depending upon the slope of the intere
term structure, for the case of interest-rate futures.3

To date, a/c/e has introduced seven reduced tick spread futures contracts. Three o
associated with US Treasury Bond futures, 10-year Treasury Note futures, and 5-yea
sury Note futures, were introduced in January 2001, and have been well received
marketplace. A 10-year Agency Note futures reduced tick spread futures contract w
introduced in January 2001. Although modestly successful at first,4 the trading volume for
both the underlying 10-year Agency Note futures and its associated reduced tick
futures have migrated to the 10-year Swap futures and its associated reduced tick
futures since the CBOT introduced the 10-year Swap futures contract in October
followed by its reduced tick spread futures contract in May 2002. Two other red
tick spread futures products, based on the 5-year Agency Note futures and 5-yea
futures contracts, have also been introduced. However, neither of the two underlyi
tures contracts nor their associated reduced tick spread futures contracts has ever g
meaningful volume up to this time.Table 1shows the monthly trading volume to date f
the first five reduced tick spread futures contracts.

As is apparent fromTable 1, there is seasonality in the volume for each of these c
tracts. The expiration month on all the underlying financial futures contracts is M
June, September, or December. The significant demand for rolling over futures co
occurs in four weeks leading up to the contract expiration date. Closer examination o
trading volume (not shown) reveals that, for each of these reduced tick spread future
ume starts to visibly increase around the 15th to the 20th of the previous month, typ
peaks on the 28th or the 29th, then visibly decreases around the 7th of the contract
For example, for the March contract, the largest volume occurs from about Febru
through March 7.

4. The model

The model contains hedgers, informed traders, and market-makers in an overl
generations-style marketplace. Risk neutral market-makers provide liquidity to fu
markets by taking the opposite side of trades, as needed, and are compensated by c
the difference between the bid and ask prices. Market-makers incur an adverse se
cost when trading against better informed traders.

Time is broken up into a series of trading periods (dates). There is a risky asset,
underlying value changes between each period, with mean zero and varianceσ 2. Value
changes are independent over time in the basic model; serial correlation is allowed
of the model extensions. A series of futures contracts is available, each of which is tr
for two consecutive periods, after which delivery takes place (although in the model, t

3 a/c/e has developed a pricing convention responding to traders’ presumed disinclination to work with n
prices. The convention is based on adding 100 basis points to the price differential for all reduced tick
futures prices.

4 The underlying 10-year Agency Note futures contract has also achieved only modest success since
duction in 2000.
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Table 1
Monthly volume of reduced tick spread futures, by contract

US Treasury Ten-year Five-year Ten-year Ten-y
Bonds Treasuries Treasuries Agencies Swap

Jan. 2001 212 110 0 0 N/A
Feb. 2001 25,750 74,050 25,756 8117 N/A
Mar. 2001 11,410 21,196 9300 0 N/A
Apr. 2001 11,178 1696 0 0 N/A
May 2001 79,438 160,178 36,786 3000 N/A
Jun. 2001 24,260 59,588 41,272 0 N/A
Jul. 2001 774 1298 0 0 N/A
Aug. 2001 147,530 221,256 84,920 2452 N/A
Sep. 2001 33,940 156,135 26,008 2276 N/A
Oct. 2001 8920 1322 4874 304 N/A
Nov. 2001 101,800 189,346 79,612 3558 N/A
Dec. 2001 24,356 58,204 54,320 992 N/A
Jan. 2002 1838 2020 900 0 N/A
Feb. 2002 146,946 233,906 177,262 2388 N/A
Mar. 2002 133,184 163,432 54,970 0 N/A
Apr. 2002 300 4006 150 0 N/A
May 2002 230,174 380,750 234,304 286 7702
Jun. 2002 96,836 158,966 102,608 0 0
Jul 2002 8740 32,578 676 0 0
Aug. 2002 219,074 423,324 177,700 0 2502
Sep. 2002 116,844 191,996 52,898 166 831
Oct. 2002 11,562 11,136 752 0 0
Nov. 2002 272,150 588,564 416,586 0 23,524
Dec. 2002 125,444 260,522 125,730 0 0
Jan. 2003 15,262 66,586 11,624 0 0
Feb. 2003 355,406 778,548 473,828 0 20,48

Note: Reduced tick spread futures were introduced in January 2001 for 30-year Treasuries, 10-year Tre
5-year Treasuries, and 10-year Agencies, and introduced in May 2002 for 10-year Swaps.

clear their positions before delivery occurs). Futures contracts overlap, so that in
trading period, two futures contracts with different delivery dates are extant: trade
take positions in the “new” contract (delivery immediately after next period), and clos
positions in the “old” contract (delivery immediately after this period).

Each period, there is a massH of new hedgers. Each hedger is equally likely to
endowed with+E or −E units of the risky asset. Each hedger’s lifetime is either
or two periods long;q is the probability of a two period lifetime. A hedger can trade
the futures market(s) for the risky asset during his life. Thus, a hedger with a one
lifetime born at dateT can initiate a futures position at dateT , and close the position at da
T + 1, while a hedger with a two period lifetime can initiate a futures position at daT ,
adjust it at dateT + 1, and close it at dateT + 2. Hedgers do not know their lifetime
birth, but find it out after one period passes. Hedgers have mean-variance preferenc
risk-aversionΓ over their final wealth.

Each period, there is a massI of new informed traders. Each informed trader has priv
information about the next risky asset value change. Conditional on her informatio
informed trader either appraises the next risky asset value change as having mean+θ > 0
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or mean−θ , ex ante equally likely, and variancekσ 2. Therefore, an informed trader
gain from making a unit trade, of appropriate direction, in the risky asset has meanθ and
variancekσ 2, less the bid–ask spread.5 The parametersθ andk thus measure the mean a
variance of the quality of informed traders’ information. Informed traders have one p
lifetimes and mean-variance preferences with risk-aversionΓ over their final wealth.

Two scenarios are considered: a scenario with the two already described future
tracts, new and old, trading each period (“without spread futures”), and an alter
scenario with a spread futures contract available as well (“with spread futures”). The s
futures contract is based on the calendar spread between the new and old contract
identical to a long position in the new contract combined with a short position in th
contract. When available to trade, the spread futures contract will be the natural
ment for hedgers who discover their lifespan is two periods, leading to a desire to ro
their short-lived position into a longer-lived position. Utilizing spread futures allows t
hedgers to convert their position in the old contract, which delivers before the conc
of their hedging needs, into a position in the new contract, which delivers after the
clusion of their hedging needs. Of course, if the spread futures contract is unavailab
hedgers can achieve a similar result directly by simultaneously trading equal and op
positions in the new and old futures contracts.

When trading, traders incur, and market-makers receive, a bid–ask spread, the fr
cost associated with a round trip trade for a hedger or informed trader. The endoge
determined bid–ask spread in the futures for the risky asset is denoted byS � 0. When
spread futures are available, the bid–ask spread in the spread futures is denoted byD � 0.
Since the calendar spread can always be directly created in the futures markets,D � S.

Suppose spread futures are available to trade. A hedger with endowment−E optimally
takes an initial futures positionx[S,D], adjusted the next period to a positionx ′[S,D,x]
if the hedger turns out to be long-lived. These positions satisfy

(1)

Max
x,x′ (1− q)

[−S|x| − Γ σ 2(x − E)2/2
]

+ q
[−S · max(|x|, |x′|) − D · min(|x|, |x′|) − Γ σ 2((x − E)2 + (x′ − E)2)/2

]
.

At the optimum, these are identical long positionsx′ = x � 0. Symmetrically, for a hedge
with endowment+E, the optimal initial and adjusted futures positions are the short p
tions of the same magnitude,−x. Therefore, allH hedgers take an initial futures positio
with magnitudex[S,D]. Of these hedgers,qH will be long-lived and roll over their posi
tion next period using spread futures, while(1− q)H will be short-lived and simply clos
their position next period.

5 One possible underlying structure is that the underlying risky asset value change is equally likely to+σ

or −σ each period, and the informed trader, after observing her signal, assigns probabilityp > 1/2 to the correct
direction of price movement. Thenθ = pσ − (1 − p)σ = (2p − 1)σ , andk = 4p(1 − p). Another possible
underlying structure is that the asset value change each period takes the formΘ + Φ, with Θ equally likely to be
+θ or −θ , andΦ independent ofΘ . If the informed perfectly observesΘ , thenk = 1− (θ/σ )2.
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An informed trader with conditional mean+θ optimally takes futures positiony[S]
satisfying

(2)Max
y

(θ − S)y − Γ kσ 2y2/2

if S � θ . If the bid–ask spread is so large thatS > θ , then informed traders do not pa
ticipate in the market,y[S] = 0. Similarly, an informed trader with conditional mean−θ

optimally takes futures position−y[S]. Thus,y[S] is the magnitude of the futures positio
for all I informed traders.

Alternatively, suppose spread futures contracts are not available for trade. The
calendar spread trade can be made directly using the primary futures contracts, incu
bid–ask spreadS. Trades of both hedgers and informed can be inferred by settingD = S in
the previous analysis. AllH hedgers take initial futures positions with magnitudex[S,S].
All hedgers will close this position next period, butqH of the hedgers will also open th
same size position in the subsequent delivery futures contract. As before, allI informed
traders take a position of magnitudey[S].

4.1. Competitive bid–ask spreads

This section considers the case of the bid–ask spread(s) for futures contracts be
competitively, so that market-makers break even in expectation. Without spread fu
the break-even condition in the primary futures market is

(3)H(1+ q)S · x[S,S] + I (S − θ) · y[S] = 0.

Here,H hedgers generate trade volumeH(1+q) ·x[S,S], andI informed traders genera
volume I · y[S]. Market-makers receive bid–ask spread S for each contract trade
expect to loseθ per contract traded with informed traders due to information asymm
In the absence of spread futures, denote the competitive bid–ask spread in the p
futures market, satisfying(3), by SNSF.

With spread futures available, the break-even conditions in the primary and spre
tures markets are

(4)HS · x[S,D] + I (S − θ) · y[S] = 0, HqD · x[S,D] = 0.

The H hedgers andI informed traders generate volumeH · x[S,D] + I · y[S] in the
primary futures, andqH · x[S,D] in the spread futures. Market-makers receive bid–
spreadS per primary andD per spread futures contract traded, but expect to loseθ per
primary futures contract traded with informed traders due to information asymmet
the presence of spread futures, denote the competitive bid–ask spreads in the prim
spread futures markets, satisfying(4), by SSF andDSF, respectively.

To avoid the possibility that the adverse selection problem is so severe that it shut
the futures market, it is assumed thatθ � Γ σ 2E. By implying the existence of a primar
market bid–ask spread large enough to eliminate all informed trade, but not all he
activity,6 this guarantees the existence of bid–ask spreads sustaining futures trad

6 Specifically, any spreadS satisfyingθ � S < Γ σ2E suffices.
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is consistent with the focus of the paper, examining the introduction of calendar s
futures to an already existing futures market.

As long as the available spread futures market offers a lower transaction cost than
trading,D < S, hedgers desiring a calendar spread utilize spread futures rather tha
structing the spread by simultaneously trading the new and old futures contracts. H
rolling over old positions migrate to the spread futures market while hedgers init
new positions as well as informed traders remain in the primary futures market. How
hedgers recognize that the potential cost of rolling over their position later is lowe
therefore take larger initial futures positions.

Since only hedgers migrate to the spread futures market, the bid–ask spread
market falls. In the model, since adverse selection generates the only trading frictio
bid–ask spread falls all the way to zero. Remaining in the primary market are info
traders and hedgers taking initial positions, although the latter increase their positio
Since hedgers generate two opposing demand effects in the primary market, the b
spread there can either increase or decrease. Specifically, if the adverse selection
is sufficiently strong, so that a large bid–ask spread is required in the equilibrium
out spread futures, then introducing spread futures lowers the trading cost for he
and increases market-maker revenue from hedgers; lowering the bid–ask spread
primary market increases market-makers losses from informed, and brings the m
maker to the break-even profit level. If the adverse selection problem is weak, with a
bid–ask spread in equilibrium without spread futures, introducing spread futures dec
market-maker revenue from hedgers; raising the bid–ask spread in the primary mar
creases market-maker losses from informed, bringing the market-makers to brea
The adverse selection problem is weak when the informed signal has low meanθ and high
variancek, and the number of informed traders per hedgerI/H is small.

The separation of hedgers from informed traders through spread futures lessens
verse selection problem, and the benefits pass to hedgers with competitive market-m
Hedgers care about only their overall (initial plus adjustment) trading costS + qD, which
declines. Total (primary and spread) hedging volumeH(1 + q)x increases, and hedge
are better off. This intuition is formalized inProposition 1.

Proposition 1. The competitive bid–ask spread of the primary futures market may be in-
creased or decreased by the introduction of calendar spread futures. The bid–ask spread
is increased, SSF> SNSF, exactly when θ < Γ σ 2E · [1+ √

(kH/I)] · (1+ q)/(2+ q). The
competitive bid–ask spread of the calendar spread futures is DSF = 0. Total hedging vol-
ume is higher in the presence of spread futures, as x[SSF,DSF] � x[SNSF, SNSF]. Hedgers
are made better off by the introduction of calendar spread futures.

In order to implement the new competitive bid–ask spreads with the introducti
calendar spread futures, it may be necessary to reduce the minimum tick size. In par
if the minimum tick size in the primary market was set near the competitive bid–ask s
without spread futures, then the minimum tick size in the spread futures will need to
below that of the primary market. Thus, it is natural to expect that the spread future
be introduced with the reduced tick feature.
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4.2. Monopolistic bid–ask spreads

The section considers the case where the exchange is able to exercise monopol
in setting the levels of the bid–ask spread(s) for futures contracts. Furthermore, th
ask spreads are set to maximize the aggregate profit of the market-makers on the ex
who may, for example, be owners of the exchange. In the case without spread futur
optimization problem is

(5)Max
S

H(1+ q)S · x[S,S] + I (S − θ) · y[S].
In the case with spread futures, the optimization problem is

(6)Max
D�S

H(S + qD) · x[S,D] + I (S − θ) · y[S].

TheD � S constraint is necessary because if spread futures are not cheaper to trad
traders can implement calendar spreads by trading directly in the primary market.

Similar to the competitive case, when a spread futures contract with lower trans
cost is available, traders sort themselves by market. Hedgers rolling over old positio
spread futures, while hedgers initiating new positions as well as informed traders u
primary futures market. The lower potential cost of rolling over positions entices he
to take larger initial futures positions.

The presence of spread futures allows market-makers to (third degree) price dis
nate between hedgers and informed traders. Hedgers incur a costS in taking their initial
futures position and an additional costD < S if they roll the position over. Thus, the ave
age trading cost for hedgers, including trading in both futures markets, is less thanS, while
the average trading cost for informed traders isS since they cannot effectively utilize spre
futures. By price discriminating, market-makers can make trading more attractive f
desired hedgers and less attractive for the undesired informed traders. Price discrim
will be most effective by emphasizing a large difference in average trading cost be
hedgers and informed, increasingS and decreasingD. Optimally, the bid–ask spreadD
for calendar spread futures is set at its lower limit of zero, and the bid–ask spreadS for the
primary futures is set above its level in the absence of spread futures. With the introd
of spread futures, the total trading cost for hedgers decreases, so the size of their in
sitions as well as the total hedging volume increases. This is formalized inProposition 2.
An asterisk is used to denote monopolistic bid–ask spreads.

Proposition 2. The monopolistic bid–ask spread of the primary futures market is increased
by the introduction of calendar spread futures, S∗

SF � S∗
NSF. The monopolistic bid–ask

spread of the calendar spread futures is D∗
SF = 0. Total hedging volume is higher in the

presence of spread futures, as x[S∗
SF,D

∗
SF] � x[S∗

NSF, S
∗
NSF]. Hedgers are made better off

by the introduction of calendar spread futures.

The monopolistic bid–ask spread in the primary futures market is determined by th
sion between two opposing forces, the simultaneous desires to choose the bid–ask
to maximize revenue from hedgers, and to minimize informed trade and its associa
verse selection problem. This tension exists whether or not calendar spread futu
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present. The key variable is the average trading cost for hedgers; this determines t
hedging volume across the futures markets as well as the revenue market-makers
from hedgers. Without spread futures, the average trading cost for hedgers is sim
primary futures bid–ask spread; with spread futures, it also includes the lower spre
tures bid–ask spread.

To maximize revenue from hedgers, the average hedger trading cost should be s
portional to the hedger endowment sizeE (which is essentially the intercept of a line
demand curve in the presence of a monopolist), whether or not spread futures tra
minimize adverse selection, the primary futures bid–ask spread should be set equθ ,
the informed trader informational advantage. This translates to an average hedge
ing cost ofθ without spread futures, and less thanθ with spread futures, as hedgers th
also use lower-cost spread futures. WhenE is large relative toθ , so the bid–ask spread
greater than the informational advantage of traders, the adverse selection problem
inated; average hedger trading costs and hedging volumes are identical with or w
spread futures. WhenE is small relative toθ , the average hedger trading cost is se
a weighted average of the “maximize revenue” and “minimize adverse selection” l
average hedger trading cost is lower and hedging volume is higher with spread futu

As with competitive bid–ask spreads, even if the minimum tick size was near the op
bid–ask spread before the introduction of spread futures, implementing optimal bi
spreads with calendar spread futures requires the spread futures to offer a reduc
relative to the primary futures market. Furthermore, since the optimal bid–ask spr
the primary market increases, only the spread futures, and not the primary marke
reduce its tick size.

Because the monopolist has an additional parameter to optimize over, the agg
market-maker profit with spread futures,π∗

SF, is always at least as large as the profit wi
out spread futures,π∗

NSF. The gain of the market-makers,�π∗ = π∗
SF − π∗

NSF naturally
depends upon the underlying parameters. The comparative statics with respect to t
ous parameters are given inProposition 3.

Proposition 3. Under monopolistic bid–ask spreads, market-makers gain by the intro-
duction of calendar spread futures. The magnitude of the aggregate market-maker gain
�π∗ = π∗

SF − π∗
NSF is increasing in the number of hedgers H , the number of informed

traders I , and the mean of information quality θ . The gain is decreasing in the size of
hedging needs E, variance of informed quality k, trader risk aversion Γ , and risky asset
volatility σ .

From the market-makers’ viewpoint, introducing spread futures trading allows
discrimination against informed traders in terms of the bid–ask spread faced. Thu
market-makers’ gain depends upon the magnitude of the adverse selection problem
rated by the informed traders. This is increasing in the number of informed tradersI , the
expected informational advantageθ (signal mean) of such a trader, and is decreasin
the noisiness of the information as measured byk (signal variance), informed trader ris
aversionΓ and underlying asset volatilityσ . The primary source of market-maker profit
the bid–ask spread received from trading against hedgers; thus the aggregate marke
gain is increasing in the number of hedgersH .
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Comparative statics with respect toE, the endowment size per hedger, is more com
cated. As previously described, whenE is large relative toθ , the average hedger tradin
cost is identical with and without calendar spread futures; the aggregate market-m
gain from the introduction of spread futures is zero. WhenE is small relative toθ , the
average hedger trading cost is lower with spread futures, leading to a more significa
ference in aggregate market-maker profits for the cases with and without spread f
Thus, asE becomes smaller relative toθ , the aggregate gain of the market-makers fr
the introduction of spread futures becomes larger.

Of all these parameters, perhaps the two most likely in practice to determine w
a particular futures contract offers a relatively large magnitude gain for market-m
and therefore an attractive opportunity for an exchange to innovate, are large valuesH

or I , corresponding to a large number of hedgers or informed traders, respectively
also that a large value ofH generally translates into a large volume of hedging-ba
trading, while a large value ofI generally translates into a large volume of informati
based trading. Therefore, recognizing that designing and implementing a new secu
potentially expensive process, the introduction of a spread futures contract is most li
make economic sense when the primary futures market already exhibits high volum
is consistent with the observation that the spread futures introduced by the a/c/e to d
based on some of the most popular futures contracts, as measured by volume, trade
Chicago Board of Trade.

5. Extensions

In this section, three extensions of the model are considered. In the first, serial
lation of price changes in the underlying asset are allowed. In the second, hedger
preferences are allowed to depend not only upon mean and variance, but skewness
Third, it is discussed whether this model of calendar spread futures could equally w
applied to the trading of calendar spreads on options.

5.1. Serial correlation of price changes

The model is now extended by allowing serial correlation of changes in the risky
price. Specifically, changes�Pt+1 in the risky asset price fromt to t + 1 follow a first-
order autoregressive process�Pt+1 = ρ · �Pt + εt+1. The first-order autocorrelation o
price changes is Corr(�Pt ,�Pt+1) = ρ. It is assumed that the futures price equals
expectation of the risky asset price at contract delivery. It follows that the futures
change from timet to t + 1 equalsεt+1.

A hedger with endowment−E of the risky asset optimally takes an initial futures po
tion x[S,D], adjusted the next period to a positionx′[S,D,x] if the hedger turns out to b
long-lived. These positions satisfy

Max
x,x′ (1− q)

[−S|x| − Γ σ 2(x − E)2/2
]

(7)

+q
[−S · max(|x|, |x′|) − D · min(|x|, |x′|) − Γ σ 2((x − (1+ ρ)E

)2

+ (x′ − E)2)/2
]
.
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Symmetrically, a hedger with endowment+E takes the opposite futures positions,−x and
−x ′. For positive correlationρ > 0, the futures positions satisfy|x| � |x′|; if a hedger
turns out to be long-lived, he may only roll over part of his hedge. For negative corre
ρ < 0, the positions satisfy|x| � |x ′|; if a hedger turns out to be long-lived, he may actua
expand his hedge. The intuition is clearest forq = 1, ρ = −1, and zero transaction cos
a hedger, knowing himself long-lived, and that any price movement in the first perio
be completely retracted in the second, effectively faces no first period price risk, so
no hedge in the first period(x = 0) although he will hedge in the next period(x′ > 0).
Informed trader behavior is the same as the basic model.

Because hedgers may change their hedge size, the break-even conditions for com
bid–ask spreads,(3) and(4), need adjustment. Without spread futures, competition in
primary futures market implies

(8)HS(x + qx′) + I (S − θ)y = 0,

while with spread futures, competition in the primary and spread futures markets im

HS · max
(
x, (1− q)x + qx′) + I (S − θ)y = 0,

(9)HqD · min(x, x′) = 0.

With serial correlation, the appropriate constraint on the magnitude of the adverse se
problem isθ � Γ σ 2E(1+q+ρq)/(1+q), rather than theθ � Γ σ 2E assumed in the bas
model. As before, this is determined by the bid–ask spread where hedging demand
to zero.

The basic intuition is the same as the basic model with competitive market-m
Introducing spread futures allows migration of hedger spread trading, leaving info
and initial hedge trading in the primary market. The combination of larger initial he
but less spreading in the primary market may lead to a higher or lower bid–ask spread
The lower overall cost of hedging increases hedging volume and makes hedgers be

Proposition 4. Allowing serial correlation, the competitive bid–ask spread of the pri-
mary futures market may be increased or decreased by the introduction of calendar
spread futures. The bid–ask spread is increased, SSF> SNSF, exactly for θ < Γ σ 2E · [1+√

(kH/I)] · (1+q +ρq)/(2+q) and ρ � −1/2, or θ < Γ σ 2E · [1+√
((kH/I)(1− (1+

2ρ)q2/(1 + ρq)))] · (1 + ρq)/(2 − q) and ρ < −1/2. The competitive bid–ask spread of
calendar spread futures is DSF= 0. Total hedging volume is higher and hedgers are better
off with the introduction of spread futures.

In the case of monopolistically set bid–ask spreads, some results differ from the
model because of long-lived hedgers adjusting their hedge, increasing or decreas
size, depending upon whether serial correlation is negative or positive. Bid–ask s
then allow market-makers to use price discrimination against hedgers. If hedgers
roll over their hedge, only the total transaction cost(S + qD) matters to them. However,
their hedge size varies over time, the relative level of the transaction costs (primaryS and
calendar spreadD) matters as well. Monopolistic setting of the bid–ask spreads may
allow wealth to be extracted from hedgers.
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The optimization problem in the case without spread futures is

(10)Max
S

HS(x + qx′) + I (S − θ)y,

and in the case with spread futures is

(11)Max
D�S

H
(
(1− q)Sx + qS · max(x, x′) + qD · min(x, x′)

) + I (S − θ)y.

Intuition from the basic model still holds. When the spread futures offer a lower
ask spread, hedgers partially migrate to spread futures. By raising the bid–ask sp
the primary futures and lowering it in the spread futures, market-makers can make t
more attractive for hedgers and less attractive for undesired informed traders.

However, market-makers can also (second degree) price discriminate against h
Hedgers face one price to set up a hedge and another to roll it over. In the basic mod
the total trading cost matters since hedgers keep the same size hedge over time. Wi
correlation, hedgers may change their hedge size over time. Therefore, market-mak
use the relative prices of setting up a hedge (S) and rolling it over (D) to extract wealth
from hedgers, engaging in second degree price discrimination. For parameters wh
informed trader adverse selection problem is relatively unimportant, market-make
focus on price discriminating against hedgers, and hedgers will be worse off with s
futures. Furthermore, since bid–ask spreads are set to emphasize second degree p
crimination against hedgers, rather than third degree price discrimination between h
and informed, the bid–ask spread for calendar spread futures need not be set as
possible. These results are summarized inProposition 5.

Proposition 5. Allowing serial correlation, the monopolistic bid–ask spread of the primary
futures market is increased by the introduction of calendar spread futures, S∗

SF� S∗
NSF. The

monopolistic bid–ask spread of the calendar spread futures D∗
SF may be positive or zero.

Total hedging volume is higher in the presence of spread futures. Hedgers may be made
better off or worse off by the introduction of calendar spread futures.

5.2. Skewness preference

In this section, instead of allowing serial correlation in risky asset price changes, h
wealth preferences are allowed to depend not only upon mean and variance, but sk
as well.

With spread futures available, a hedger with endowment−E of the risky asset an
skewness preference coefficient+γ optimally takes an initial futures positionx, adjusted
the next period tox ′ if the hedger turns out to be long-lived, satisfying

Max
x,x′ (1− q)

[−S|x| − Γ σ 2(x − E)2/2− γQ(x − E)3/3
]

(12)

+q
[−S · max(|x|, |x′|) − D · min(|x|, |x′|) − Γ σ 2((x − E)2 + (x′ − E)2)/2

− γQ
(
(x − E)3 + (x′ − E)3)/3

]
,

whereQ is the skewness of risky asset price changes. The optimal hedge positio
long and identical; write their magnitude asx1. Similarly, a hedger with endowment+E
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and coefficient+γ takes short and identical optimal positions; write−x2. A hedger with
endowment−E and coefficient−γ optimally takes long positionsx2, and a hedger with
endowment+E and coefficient−γ optimally takes short positions−x1. Assuming an
equal number of hedgers of each of the four types, hedgers are equally likely to b
and short; write the average position asx[S,D].7

With skewness preference, the appropriate constraint on the magnitude of the a
selection problem isθ � Γ σ 2E − γQE2, rather than theθ � Γ σ 2E assumed in the ba
sic model. As before, this is determined by the bid–ask spread where hedging d
disappears.

In the case where bid–ask spread(s) are set competitively, the results and intuit
similar to the basic model. Introducing spread futures allows migration of hedger s
trading, leaving informed and initial hedge trading in the primary market. When the ad
selection problem from informed traders is strong (high meanθ and low variancek of
informed signal, and a large number of informed per hedgerI/H ), the bid–ask sprea
in the primary market falls. Because long-lived hedgers roll over their entire hedge
welfare depends upon the total hedger trading costS + qD, which is(1+ q)SNSF without
spread futures, andSSF with spread futures. Their lower total cost implies higher hed
volume and hedger welfare under spread futures.

Proposition 6. Allowing skewness preferences of hedgers, the competitive bid–ask spread
of the primary futures market may be increased or decreased by the introduction of cal-
endar spread futures. The bid–ask spread is increased, SSF > SNSF, when the adverse
selection of informed is weak (θ , I/H , or 1/k sufficiently small ). The bid–ask spread is
decreased, SSF< SNSF, when the adverse selection of informed is strong (θ , I/H , and 1/k

sufficiently large). The competitive bid–ask spread of calendar spread futures is DSF = 0.
Total hedging volume is higher and hedgers are better off with the introduction of calendar
spread futures.

In the case where bid–ask spread(s) are set monopolistically, the results and in
are also similar to those of the basic model. Since hedgers roll over their entire h
market-makers are unable to second degree price discriminate against hedgers. The
spread in the primary futures market is (weakly) increased when calendar spread
are introduced, but the overall trading cost faced by hedgers decreases, improving
welfare. The bid–ask spread for calendar spread futures is set as low as possible.

Proposition 7. Allowing skewness preferences of hedgers, the monopolistic bid–ask spread
of the primary futures market is increased by the introduction of calendar spread futures,
S∗

SF � S∗
NSF. The monopolistic bid–ask spread of the calendar spread futures is D∗

SF = 0.
Total hedging volume is higher, and hedgers are better off with the introduction of calendar
spread futures.

7 The model also works assuming all hedgers have the same skewness preference coefficientγ (or −γ ), al-
though equality of long and short position magnitudes is then lost. Thus, skewness preference need n
either desire for or against skewness, just that skewness enters into hedger preferences.
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Thus, the basic model is robust to allowing the preferences of hedgers to be ex
from mean and variance of wealth to include skewness. The results are essentially th
as in the basic model, both for competitive and monopolistic spread setting.

5.3. Calendar spreads on options

It is worthwhile considering whether the model for calendar spread futures is like
also apply to calendar spread options, that is, whether an innovation of explicitly t
calendar spread option contracts would be likely to be successful. There are three
to expect such an innovation to be distinctly less popular than for futures.

This paper models a naturally arising hedging demand for calendar spread futu
hedgers who find their hedging horizon is greater than expected will extend the life o
original futures hedge by trading a calendar spread futures position. However, there
a natural informed trader demand for calendar spread futures, since informed trad
more likely to want to take outright long or short positions.

Suppose instead there are hedgers with uncertain time horizon who prefer using o
rather than futures, to hedge. If they subsequently find their hedging horizon is great
expected, will they actually wish to trade a calendar spread option position, simultan
taking a distant expiry option position and unwinding a near expiry option position
will such trades generate significant volume in aggregate? As mentioned, there ar
reasons to expect such spread hedging demand to be distinctly less for options t
futures.

First, this hedging demand for calendar spread options will be diffused over a
of option strike prices, each corresponding to a different calendar spread option, d
ing upon the strike price of the original hedge. These strikes will depend upon hist
price movements of the underlying asset and may be far from the current unde
price. This decreases hedging demand for any particular (strike price) calendar spr
tion. Second, for some option strike prices, the hedger may not wish to update his
with additional option positions. For example, to update a hedge whose strike p
now deeply in-the-money, the hedger may prefer using futures to options. For a
whose strike price is now deeply out-of-the-money, the hedger may be tempted
unhedged for the remaining time. Therefore, hedging demand may be decreased e
ther for calendar spreads with extreme strike prices. Third, futures positions that a
unwound eventually face delivery (this argument assumes non-cash delivery), wh
tions expiring out-of-the-money will just be left unexercised. Therefore, when hed
with options rather than futures, unwinding the original hedge when extending the
life becomes less critical. Hedgers who find their hedging horizon greater than ex
may be more willing to simply buy the farther-dated option position than to employ a
endar spread trade. Again, this reduces the natural hedging demand for calendar
option trading. With a less robust natural hedging demand, the appeal of innovati
plicit trade in calendar spread options can be expected to be less than for calendar
futures.
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6. Conclusion

Calendar spread futures are a derivative on a derivative, equivalent to simultaneo
and short positions in two otherwise identical futures contracts with adjacent delivery
This paper examines why such an apparently redundant innovation is observed. C
spread trading is natural for hedgers who wish to extend the life of their original h
while informed traders are more likely to prefer trading directly in the primary futures
ket. Therefore, introducing calendar spread futures allows partial separation of hedg
informed trading. Spread futures trading disproportionately consists of hedgers, les
the market-makers’ adverse selection problem in that market.

The implications are derived both for the case where bid–ask spreads are set co
tively and the case where an exchange exercises monopoly power in setting bid–ask
to benefit market-makers. Both cases result in a lower bid–ask spread for calendar
futures relative to the primary futures market, overall lower transaction costs for he
increased hedging volume and increased hedger welfare. In the monopolistic ca
bid–ask spread in the primary futures market increases, while in the competitive ca
bid–ask spread may increase or decrease. These results are relatively robust to ch
the model specification, including allowing serial correlation of price changes in th
derlying asset, and allowing hedger wealth preferences to depend on skewness in a
to mean and variance. One notable change is that with serial correlation, hedgers op
change their hedge size over time. This exposes them to the possibility of second
price discrimination and reduced welfare in the monopolistic case.

Three types of empirical predictions arise from the model, relating to contract exis
trading volume, and the bid–ask spread. Futures markets which already exhibit hig
ing volume are predicted to be the most likely candidates for the introduction of cal
spread trading. In contrast, it is much less likely that formal contracts for trading c
dar spread option contracts will arise. Futures in which hedgers wish to take longe
hedges, and in which the adverse selection problem from informed investors is str
are also more likely candidates for spread trading.

Introducing calendar spread trading is predicted to increase the hedging volume
ciated with those futures. Although the bid–ask spread can either increase or decr
the primary futures market, the model predicts that the adverse selection problem fr
formed trading should be smaller in the spread futures market, leading to a lower b
spread than in the primary futures market. If the bid–ask spread in the primary ma
near the tick size, then implementing the smaller bid–ask spread of spread futures r
the reduced tick feature observed in currently traded calendar spread futures contra
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Appendix A. Proofs

Proof of Proposition 1. It is convenient in the proofs to definee = Γ σ 2E andJ = I/kH .
Optimizing(1), the adjusted futures position of a hedger with endowment−E is

x ′[S,D,x] =




E − S/Γ σ 2 if x � E − S/Γ σ 2,

E − D/Γ σ 2 if x � E − D/Γ σ 2 � 0,

0 if x � 0� E − D/Γ σ 2,

x otherwise.

The optimal initial position is

x[S,D] =
{

E − (S + qD)/Γ σ 2(1+ q) if S + qD � (1+ q)Γ σ 2E,

0 otherwise,

and only the fourth case forx′ is optimal,x′ = x. Similarly, the initial and adjusted future
positions of a hedger with endowment+E are−x and−x, so all hedgers take positions
magnitudex. In the case of no available spread futures,

x[S,S] =
{

E − S/Γ σ 2 if S � Γ σ 2E,

0 otherwise.

Optimizing(2), the magnitude of the initial futures position for an informed trader is

y[S] =
{

(θ − S)/Γ σ 2k if S � θ,

0 otherwise.

For a competitive futures exchange without spread futures, aggregate market-make
H(1+ q)S · x[S,S] + I (S − θ) · y[S] equals

=



H(1+ q)S(E − S/Γ σ 2) − I (θ − S)2/Γ σ 2k if S � θ,

H(1+ q)S(E − S/Γ σ 2) if θ � S � e,

0 if S � e.

The competitive bid–ask spreadSNSF is in the first region and satisfies

(A.1)(1+ q)S(e − S) = J (θ − S)2.

(Although bid–ask spreads above e generate zero profits, they do so trivially, gen
zero trade.)

With spread futures, the break-even condition for the spread futures market,HqD ×
x[S,D] = 0 impliesDSF = 0. Market-maker profit in the primary futures marketHS ×
x[S,0] + I (S − θ) · y[S] therefore equals

=



HS[E − S/Γ σ 2(1+ q)] − I (θ − S)2/Γ σ 2k if S � θ,

HS[E − S/Γ σ 2(1+ q)] if θ � S � (1+ q)e,

0 if S � (1+ q)e.

The competitive bid–ask spreadSSF is in the first region and satisfies

(A.2)S · [e − S/(1+ q)
] = J (θ − S)2.



150 C.J. Cuny / Journal of Financial Intermediation 15 (2006) 132–159

ction

ute

the
-
tion;
ec-
t
ue
to

s,

ction

ion
ad

s,
th

s,

t shut
In comparing(A.1) to (A.2), they share the same quadratic (right-hand side) cost fun
and range 0� S � θ . The quadratic (left-hand side) revenue function of(A.2) is the (left-
hand side) revenue function of(A.1) shifted horizontally to the right. To see this, substit
S′ = (1+q)S into (A.1) and compare to(A.2). The revenue functions of(A.1) and(A.2) in-
tersect atS = (1+q)e/(2+q). If the shared cost function lies below the intersection of
revenue functions, then the revenue/cost intersection of(A.1) occurs to the left of the rev
enue/cost intersection of(A.2), which occurs to the left of the revenue/revenue intersec
that is,SNSF� SSF� (1+ q)e/(2+ q). If the shared cost function lies above the inters
tion of the revenue functions, then the revenue/cost intersection of(A.1) occurs to the righ
of the revenue/cost intersection of(A.2), which occurs to the right of the revenue/reven
intersection; that is,SNSF � SSF � (1 + q)e/(2 + q). The relevant condition reduces
whetherJ · [θ − (1 + q)e/(2 + q)]2 is lesser or greater than[(1 + q)e/(2 + q)]2, which
reduces to whetherθ is lesser or greater than[1+ √

(kH/I)] · [(1+ q)/(2+ q)] · Γ σ 2E.
To compare the total hedging volume,H(1 + q)x, note that with spread future

x[SSF,0] = E − SSF/Γ σ 2(1 + q), and that without spread futures,x[SNSF, SNSF] =
E − SNSF/Γ σ 2. Therefore, compareSSF to (1 + q)SNSF. Transform(A.1) by substitut-
ing S′ = (1+ q)S to get

(A.3)S′ · [e − S′/(1+ q)
] = J

[
θ − S′/(1+ q)

]2

over the range 0� S′ � (1+ q)θ .
In comparing(A.2) and(A.3), they share the same revenue functions. The cost fun

of (A.3) is the cost function of(A.2) stretched horizontally to the right by a factor(1+ q).
The revenue/cost intersection of(A.3) occurs to the right of the revenue/cost intersect
of (A.2), that is,(1+ q)SNSF� SSF. Total hedging volume is (weakly) higher with spre
futures.

To examine the hedger welfare change from introducing spread futures, sincex′ = x is
optimal, substitute into the hedger optimization(1) to get

(A.4)Max
x

−(S + qD)|x| − Γ σ 2(1+ q)(x − E)2/2.

With spread futures, the total transaction cost(S + qD) = SSF, and without spread future
(S + qD) = (1 + q)SNSF. Since(1 + q)SNSF � SSF, hedgers are (weakly) better off wi
spread futures. �
Proof of Proposition 2. The initial futures position of hedgersx[S,D] and informed
tradersy[S] are given in the proof ofProposition 1. For the case without spread future
aggregate market-maker profit from(5) is optimized by

(A.5)Max
S

(1+ q)S(e − S) − J
(
max(θ − S,0)

)2
.

The first-order condition implies the optimal spread equals

(A.6)S∗
NSF=

{ [(1+ q)e + 2Jθ ]/[2(1+ q + J )] if e/2� θ � e,

e/2 if θ � e/2.

Note thatθ � e is the assumption previously made to guarantee that markets do no
down from severe adverse selection.
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For the case with spread futures, aggregate market-maker profit from(6) is optimized
by

Max
D�S

(S + qD)
[
e − (S + qD)/(1+ q)

] − J
(
max(θ − S,0)

)2
.

For anyD > 0, the same revenue with lower adverse selection costs can be achie
raisingS and loweringD to keep(S + qD) constant. Therefore, the optimalD∗

SF = 0.
Substitute this back and simplify to

(A.7)Max
S

S
[
e − S/(1+ q)

] − J
(
max(θ − S,0)

)2
.

The first-order condition implies the optimal spread equals

(A.8)S∗
SF=

{
(1+ q)(e + 2Jθ)/[2(1+ J + qJ )] if (1+ q)e/2� θ � e,

(1+ q)e/2 if θ � (1+ q)e/2.

To compareS∗
NSF andS∗

SF, consider the marginal revenue/marginal cost intersection
both(A.5) and(A.7). In this context, marginal is with respect to changes in the price
bid–ask spread). In the region where marginal revenue is negative (note that margin
is), marginal revenue for(A.5), (1 + q)(e − 2S), lies to the left of marginal revenue fo
(A.7), e − 2S/(1 + q). (A.5) and(A.7) share the same marginal cost function; its in
section with(A.5) marginal revenue is left of its intersection with(A.7) marginal revenue
S∗

NSF� S∗
SF.

To compare the total hedging volume,H(1 + q)x, note that with spread future
x[S∗

SF,0] = E − S∗
SF/Γ σ 2(1 + q), and that without spread futures,x[S∗

NSF, S
∗
NSF] =

E − S∗
NSF/Γ σ 2. Therefore, compareS∗

SF to (1 + q)S∗
NSF. Transform(A.7) by substitut-

ing S′ = S/(1+ q),

(A.9)Max
S′ (1+ q)S′(e − S′) = J · (max

(
θ − (1+ q)S′,0

))2
.

The marginal cost of(A.9), −2J (1 + q) · max(θ − (1 + q)S ′,0), lies above the margina
cost of (A.5), −2J · max(θ − S,0), for values aboveθ/(2 + q). Both (A.5) and (A.9)
share the same marginal revenue, which is decreasing and non-negative atθ/(2 + q).
Therefore, the marginal revenue/marginal cost intersection of(A.9) is left of the margina
revenue/marginal cost intersection of(A.5), soS∗

SF/(1+ q) = S∗
NSF. Total hedging volume

is (weakly) higher with spread futures.
For the hedger welfare change from introducing spread futures, refer to(A.4) in Propo-

sition 1. Since(1+ q)S∗
NSF� S∗

SF, hedgers are (weakly) better off with spread futures.�
Proof of Proposition 3. The aggregate market-maker profitπ∗

NSF in the case of the mo
nopolistic exchange, without spread futures, can be found by substituting(A.6) into (A.5).
Thus,

π∗
NSF=

{
(H/Γ σ 2)(−Jθ2 + [(1+ q)e + 2Jθ ]2/4(1+ q + J )) if e/2� θ � e,

(H/Γ σ 2)(1+ q)e2/4 if θ � e/2.
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The aggregate market-maker profitπ∗
SF in the case of the monopolistic exchange, w

spread futures, can be found by substituting(A.8) into (A.7). Thus,

π∗
SF=

{
(H/Γ σ 2)(−Jθ2 + (e + 2Jθ)2/4[J + (1+ q)−1] if (1+ q)e/2� θ � e,

(H/Γ σ 2)(1+ q)e2/4 if θ � (1+ q)e/2.

The difference�π∗ = π∗
SF − π∗

NSF gives the increase in market-maker profit from int
ducing spread futures. Thus,(Γ σ 2/H) · �π∗ equals

(A.10)=




(e + 2Jθ)2/4[J + (1+ q)−1] − [(1+ q)e + 2Jθ ]2/4(1+ q + J )

= qJ [4θe(1− J ) − (2+ q)e2 + 4Jθ2(2+ q)/(1+ q)]/
4(1+ q + J )[J + (1+ q)−1], if (1+ q)e/2� θ � e,

(1+ q)e2/4+ Jθ2 − [(1+ q)e + 2Jθ ]2/4(1+ q + J )

= (1+ q)J (2θ − e)2/4(1+ q + J ), if e/2� θ � (1+ q)e/2,

0 if θ � e/2.

First examine the first region,θ � e � 2θ/(1+ q), where

�π∗ = (
qHJ/4Γ σ 2(1+ q + J )

[
J + (1+ q)−1])

× [
4θe(1− J ) − (2+ q)e2 + 4Jθ2(2+ q)/(1+ q)

]
.

Examine the signs of a series of partial derivatives. First with respect toΓ σ 2 (note thatΓ
andσ 2 only appear together),

∂(�π∗)/∂
(
Γ σ 2)

= (
qHJ/4

(
Γ σ 2)2

(1+ q + J )
[
J + (1+ q)−1])

× [−(2+ q)e2 − 4Jθ2(2+ q)/(1+ q)
]
� 0.

Therefore,�π∗ is decreasing inΓ and inσ . Next with respect toE,

∂(�π∗)/∂E

= (
qHJ/4(1+ q + J )

[
J + (1+ q)−1]) · [4θ(1− J ) − (2+ q)2e

]

�
(
qHJ/4(1+ q + J )

[
J + (1+ q)−1]) · [4e(1− J ) − (2+ q)2e

]

= (
qHJ/4(1+ q + J )

[
J + (1+ q)−1]) · [−2e(q + 2J )

]
� 0.

�π∗ is decreasing inE. Next with respect toθ ,



C.J. Cuny / Journal of Financial Intermediation 15 (2006) 132–159 153
∂(�π∗)/∂θ

= (
qHJ/4Γ σ 2(1+ q + J )

[
J + (1+ q)−1])

× [
4e(1− J ) + 8Jθ(2+ q)/(1+ q)

]
�

(
qHJ/4Γ σ 2(1+ q + J )

[
J + (1+ q)−1]) · [4e(1− J ) + 4eJ (2+ q)

]
= (

qHJ/4Γ σ 2(1+ q + J )
[
J + (1+ q)−1]) · [4e(1+ J + qJ )

]
� 0.

�π∗ is increasing inθ . Next with respect toJ ,

∂(�π∗)/∂J = (
qH/4Γ σ 2(1+ q + J )2[J + (1+ q)−1]2)
× ([

(2+ q)(2θ − e)2 + 4θ2(2+ q)/(1+ q)2 − 4θe/(1+ q)
]
J 2

+ [
8θ2(2+ q)/(1+ q) − 8θe

]
J + [

4θe − (2+ q)e2])
�

(
qH/4Γ σ 2(1+ q + J )2[J + (1+ q)−1]2)
× ([

(2+ q)(2θ − e)2 + 2θe(2+ q)/(1+ q) − 4θe/(1+ q)
]
J 2

+ [
4θe(2+ q) − 8θe

]
J + [

2(1+ q)e2 − (2+ q)e2])
= (

qH/4Γ σ 2(1+ q + J )2[J + (1+ q)−1]2)
× ([

(2+ q)(2θ − e)2 + 2θeq/(1+ q)
]
J 2 + 4θeqJ + qe2) � 0.

SinceJ = (I/kH), �π∗ is increasing inI and decreasing ink. Next, write�π∗ as

�π∗ = (
qI/4kΓ σ 2(1+ q + J )

[
J + (1+ q)−1])

× [
4θe(1− J ) − (2+ q)e2 + 4Jθ2(2+ q)/(1+ q)

]
and take the partial derivative with respect toH ,

∂(�π∗)/∂H

= (
qI/4kΓ σ 2(1+ q + J )2[J + (1+ q)−1]2) · (∂J/∂H)

× ([
J 2 + (2+ 2q + q2)J/(1+ q) + 1

][
4θ2(2+ q)/(1+ q) − 4θe

]
− [

4θe(1− J ) − (2+ q)e2 + 4Jθ2(2+ q)/(1+ q)
]

× [
2J + (2+ 2q + q2)/(1+ q)

])
= (

qI2/4kHΓ σ 2(1+ q + J )2[J + (1+ q)−1]2)
× ([

4θ2(2+ q)/(1+ q) − 4θe
]
J 2 + 2

[
4θe − (2+ q)e2]J

+ [−(2+ q)(2+ 2q + q2)e2 + 4θ(3+ 3q + q2)e − 4θ2(2+ q)
] · (1+ q)−1).

The coefficients ofJ 2, J , and(1+ q)−1 are all positive. To show this forJ 2,

4θ2(2+ q)/(1+ q) − 4θe � 2θ(2+ q)e − 4θe = 2θqe � 0.

To show this forJ ,

2
[
4θe − (2+ q)e2] � 2

[
2(1+ q)e2 − (2+ q)e2] = 2qe2 � 0.
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To show this for(1 + q)−1 across the regionθ � e � 2θ/(1 + q), note that this term is
quadratic ine, with a negative coefficient one2. Therefore, the minimum value over all po
sible values ofe occurs at an endpoint, either ate = θ or e = 2θ/(1+q). At e = θ , the term
has value(2− q2)qθ2 � 0, and ate = 2θ/(1+ q), the term has value 4θ2q/(1+ q)2 � 0.
Therefore, the term is non-negative over the region, and�π∗ is increasing inH .

Now examine the second region, 2θ/(1+ q) � e � 2θ , where

�π∗ = (1+ q)HJ(2θ − e)2/4Γ σ 2(1+ q + J ).

It follows that �π∗ is decreasing inE, increasing inθ , increasing inJ (and therefore
increasing inI and decreasing ink), and increasing inq. Taking the partial derivative with
respect toΓ σ 2,

∂(�π∗)/∂
(
Γ σ 2)

= [
(1+ q)HJ/4

(
Γ σ 2)2

(1+ q + J )
] · [−2e(2θ − e) − (2θ − e)2] � 0.

Therefore,�π∗ is decreasing inΓ and inσ . Taking the partial derivative with respe
to H ,

∂(�π∗)/∂H = [
(1+ q)(I/k)(2θ − e)2/4Γ σ 2(1+ q + J )2] · [I/kH 2] � 0.

�π∗ is increasing inH . �
Proof of Proposition 4. Note that�Pt+1 = ρ�Pt + εt+1, so at timet , εt+1 is the unex-
pected part of�Pt+1. Also, (�Pt+1 + �Pt+2) = ρ(1+ ρ)�Pt + (1 + ρ)εt+1 + εt+2, so
at time t , (1 + ρ)εt+1 + εt+2 is the unexpected part of(�Pt+1 + �Pt+2). Equation(7)
follows.

Optimizing(7), and assuming nonzero demand, the hedger futures position magn
are

x′[S,D,x] =



(e − D)/Γ σ 2 if x � (e − D)/Γ σ 2,

(e − S)/Γ σ 2 if x � (e − S)/Γ σ 2,

x otherwise;

x[S,D] =



((1+ ρq)e − S)/Γ σ 2 if S − D � ρqe,

((1+ ρq)e − (1− q)S − qD)/Γ σ 2 if S − D � −ρe,

((1+ q + ρq)e − S − qD)/(1+ q)Γ σ 2 otherwise.

The first and third cases are possible whenρ > 0, and the second and third whenρ < 0.
In the competitive case without spread futures,D = S. For all ρ, x = ((1 + ρq)e −

S)/Γ σ 2 and x′ = (e − S)/Γ σ 2. Aggregate market-maker profitH(Sx + qDx′) +
I (S − θ) · y equals zero when the bid–ask spreadSNSF satisfies

(A.11)S · ((1+ q + ρq)e − (1+ q)S
) = J (θ − S)2.

Hedging volumeH(x + qx′) = (H/Γ σ 2) · ((1+ q + ρq)e − (1+ q)SNSF).
In the competitive case with spread futures, break-even for the spread futures

impliesDSF= 0. The hedge positions satisfy
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x = (
(1+ ρq)e − S

)
/Γ σ 2, x′ = e/Γ σ 2 if ρ � 0 andS � ρqe,

x = x′ = (
(1+ q + ρq)e − S

)
/(1+ q)Γ σ 2 if ρ � 0 andS � ρqe,

x = (
(1+ ρq)e − (1− q)S

)
/Γ σ 2, x′ = (e − S)/Γ σ 2 if ρ � 0 andS � −ρe,

x = x′ = (
(1+ q + ρq)e − S

)
/(1+ q)Γ σ 2 if ρ � 0 andS � −ρe.

Forρ � 0, x � x′, and aggregate market-maker profitHSx + I (S − θ)y equals zero whe
the bid–ask spreadSSF satisfies

(A.12)S · Γ σ 2x = J (θ − S)2.

For ρ < 0, x′ � x, and aggregate market-maker profitHS(x + q(x′ − x)) + I (S − θ)y

equals zero when the bid–ask spreadSSF satisfies

(A.13)S · Γ σ 2((1− q)x + qx′) = J (θ − S)2.

In both cases, total hedging volume isH(x + qx′) = (H/Γ σ 2)((1+ q + ρq)e − SSF).
For ρ � 0, compare(A.11) and(A.12). The cost functions are identical. The reven

functions intersect atS = (1+ q + ρq)e/(2+ q). Whether the common cost function li
above or below the intersection of revenue functions determines whether the reven
intersection of(A.11) occurs to the left or right of the revenue/cost intersection of(A.12).
This condition reduces toSSF> SNSF whenθ < [1+ √

(1/J )] · (1+ q + ρq)e/(2+ q).
Similarly, for ρ < 0, compare(A.11) and(A.13). The cost functions are identical. Th

revenue functions intersect atS = (1+ q + ρq)e/(2+ q) for theρ � −1/2 case, andS =
(1+ρq)e/(2−q) for theρ < −1/2 case. Checking whether the common cost function
above or below the intersection of revenue functions yields parametric conditions red
to SSF > SNSF whenθ < [1 + √

(1/J )] · (1 + q + ρq)e/(2 + q) for ρ � −1/2, andθ <

[1+ √
(1− (1+ 2ρ)q2/(1+ ρq)J )] · (1+ ρq)e/(2− q) for ρ < −1/2.

To compare total hedging volumes with and without spread futures, one need only
pareSSF to (1+ q)SNSF. Transform(A.11) by substitutingM = (1+ q)S to get

(A.14)M
(
(1+ q + ρq)e − M

)
/(1+ q) = J

[
θ − M/(1+ q)

]2
.

For ρ � 0, compare(A.12) and(A.14). The cost function of(A.14) is the cost function
of (A.12) stretched horizontally to the right by a factor(1 + q); they are non-negativ
and declining. The revenue function of(A.12) is above the revenue function of(A.14),
and starts at the origin. This implies that the revenue/cost intersection of(A.12) occurs
to the left of the revenue/cost intersection of(A.14), that is,SSF � (1+ q)SNSF. A similar
argument holds forρ < 0, comparing(A.13)and(A.14). Total hedging volume is (weakly
higher with spread futures.

By numerical calculation over possible parameters, hedger welfare is (weakly) h
with spread futures. �
Proof of Proposition 5. For the case without spread futures, optimization(10) can be
rewritten as:

(A.15)Max
S

S
(
(1+ q + ρq)e − S

) − J
(
max(θ − S,0)

)2
,
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with total hedging volumeH(x + qx′) = (H/Γ σ 2)((1 + q + ρq)e − S∗
NSF). This has

marginal revenue(1+ q + ρq)e − 2S, and marginal cost−2J · max(θ − S,0).
For the case with spread futures, optimization(11)can be rewritten as:

(A.16)Max
D�S

(1− q)Sx + qS · max(x, x′) + qD · min(x, x′) − J · (max(θ − S,0)
)2

.

Forρ � 0, the revenue terms can be written as:

=
{

(1+ ρq)eS − S2 + qD(e − D) if S − D � ρqe,

((1+ q + ρq)e(S + qD) − (S + qD)2)/(1+ q) if S − D � ρqe.

Forρ � 0, the revenue terms can be written as:

=



(1+ ρq)e((1− q)S + qD) − ((1− q)S + qD)2

+ qS(e − S), if S − D � −ρe,

((1+ q + ρq)e(S + qD) − (S + qD)2)/(1+ q) if S − D � −ρe.

For θ < (1 + q + ρq)e/2(1 + q), the optimal bid–ask spread without spread future
S∗

NSF = (1 + q + ρq)e/2(1 + q), with hedger welfare−ρ2q(1 − q)e2/2 − 3(1 + q +
ρq)2e2/8(1 + q). The optimal bid–ask spreads with spread futures areD∗

SF = e/2 and
S∗

SF = (1 + ρq)e/2, with hedger welfare−ρ2q(1 − q)e2/2 − 3(q + (1 + ρq)2)e2/8. In
this case, hedgers are better off without spread futures. In other cases, for exampl
ρ = 0, hedgers are better off with spread futures. Therefore,D∗

SF need not be zero an
hedger welfare can go either way.

By numerical calculation over possible parameters,S∗
SF � S∗

NSF, and (1 + q)S∗
NSF �

S∗
SF+ qD∗

SF, so total hedging volume is (weakly) higher with spread futures.�
Proof of Proposition 6. Optimizing(12) overx′, and writingA = 4γQ/(Γ σ 2)2, the ad-
justed hedger futures position magnitudes are:

x′ =




E − (2/AΓ σ 2)(−1+ √
(1+ AD)),

if x > E − (2/AΓ σ 2)(−1+ √
(1+ AD)),

E − (2/AΓ σ 2)(−1+ √
(1+ AS)),

if x < E − (2/AΓ σ 2)(−1+ √
(1+ AS)),

x otherwise.

Optimizing overx, only the third case ofx′ turns out to be relevant, andx = x′ = x1, where
x1 = E − (2/AΓ σ 2)(−1+√

(1+AZ)), andZ = (S +qD)/(1+q). A similar calculation

applies for other endowment and coefficient values, withx2 = E − (2/AΓ σ 2)(1− √
(1−

AZ)). To guaranteex1 andx2 to be non-negative, it is required that−1< AZ < 1, and that
Z < e − Ae2/4. Aggregating over the four hedger types (endowments±E, coefficients
±γ ) gives

x[S,D] = (
e − f

(
(S + qD)/(1+ q)

))
/Γ σ 2,

wheref (Z) = (
√

(1+AZ)−√
(1−AZ))/A. Note thatf is increasing. In the competitiv

case without spread futures,D = S. Aggregate market-maker profitH(Sx + qDx ′) +
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I (S − θ)y equals zero when the bid–ask spreadSNSF satisfies

(A.17)(1+ q)S
(
e − f (S)

) = J (θ − S)2.

Total hedging volumeH(x + qx′) = (H/Γ σ 2)(1+ q)(e − f (SNSF)).
In the competitive case with spread futures, break-even for the spread futures

impliesDSF= 0. Aggregate market-maker profit in the primary marketHSx + I (S − θ)y

equals zero when the bid–ask spreadSSF satisfies

(A.18)S
(
e − f

(
S/(1+ q)

)) = J (θ − S)2.

Total hedging volumeH(x + qx′) = (H/Γ σ 2)(1+ q)(e − f (SF/(1+ q))).
Revenue function(A.18) is revenue function(A.17) stretched rightward by a facto

(1+ q). (Both are upside-down U-shaped.) Consider their (non-origin) intersection
If the shared cost function of(A.17) and(A.18) passes below/above the revenue functi
at the intersection, thenSNSF is less/greater thanSSF. A sufficient condition to pass belo
are that the maximum value of the cost function,Jθ2, is less than the revenue value at
intersection, i.e.,J or θ is sufficiently small. Sufficient conditions to pass above are thθ

lies to the right of the intersection (θ sufficiently large) and that the cost function is ve
steep (J sufficiently large).

Hedging volumes with and without spread futures are compared by comparingSSF with
(1+ q)SNSF. Transform(A.17) by substitutingM = (1+ q)S to get

(A.19)M
(
e − f

(
M/(1+ q)

)) = J
(
θ − M/(1+ q)

)2
.

Compare(A.18) and(A.19). They share revenue functions. The cost function of(A.19) is
above that of(A.18), implying the revenue/cost intersection of(A.19) occurs to the righ
of that for(A.18), implying (1 + q)SNSF � SSF. Total hedging volume is (weakly) highe
with spread futures. Substitutingx′ = x into (12)shows that hedger welfare depends up
(S + qD); this is SSF with spread futures, and(1 + q)SNSF without. Hedger welfare is
therefore (weakly) higher with spread futures.�
Proof of Proposition 7. For the case without spread futures, market-maker profit is
mized by maximizing

(A.20)(1+ q)S
(
e − f (S)

) − J
(
max(θ − S,0)

)2
,

with total hedging volumeH(x + qx′) = (H/Γ σ 2)(1 + q)(e − f (S∗
NSF)). This leads to

marginal revenue(1+ q)(e − f (S) − Sf ′(S)) and marginal cost−2J · max(θ − S,0).
For the case with spread futures, market-maker profit is optimized by maximizing

(A.21)(S + qD)
(
e − f

(
(S + qD)/(1+ q)

)) − J
(
max(θ − S,0)

)2
.

For a given level of(S + qD), this can be (weakly) increased by increasingS and decreas
ing D, while keeping(S + qD) fixed. It follows thatD∗

SF= 0, and(A.21) can be rewritten
as:

(A.22)S
(
e − f

(
S/(1+ q)

)) − J
(
max(θ − S,0)

)2
,
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with total hedging volumeH(x + qx′) = (H/Γ σ 2)(1 + q)(e − f (S∗
SF/(1 + q))). This

leads to marginal revenue(e − f (S/(1 + q)) − (S/(1 + q))f ′(S/(1 + q))) and marginal
cost−2J · max(θ − S,0).

Note that, because−2f ′(S) − Sf ′′(S) < 0, marginal revenue is decreasing. Relative
the function(e − f (S) − Sf ′(S)), marginal revenue in(A.20) is stretched vertically by a
factor(1+ q), and marginal revenue in(A.22) is stretched to the right by a factor(1+ q).
In the relevant region (non-positive marginal revenue), marginal revenue for(A.20) is left
of marginal revenue for(A.22). The shared marginal cost function (which starts out be
the marginal revenues) intersects the marginal revenue of(A.20) left of where it intersects
the marginal revenue of(A.22), soS∗

NSF� S∗
SF.

To compare hedging volumes, letM = (1+ q)S in (A.20); rewrite as

(A.23)M
(
e − f

(
M/(1+ q)

)) − J
(
max

(
θ − M/(1+ q),0

))2
.

Marginal revenue is(e −f (M/(1+ q))− (M/(1+ q))f ′(M/(1+ q))), and marginal cos
is −2J · max(θ − M/(1 + q),0)/(1 + q). The marginal revenue functions in(A.22) and
(A.23) are identical and downward sloping. The marginal cost functions of(A.22) and
(A.23) intersect atθ/(2 + q); to the right, the(A.22) marginal cost function is greater.
the marginal revenue function is greater than the marginal cost functions atθ/(2+q), then
the marginal revenue/cost intersection for(A.22) is to the left of the intersection for(A.23);
that is,S∗

SF� (1+ q)S∗
NSF.

Write φ = Aθ/(2+q). Noteφ � Aθ/2� A(e−Ae2/4)/2. Inverting,Ae � 2−2√
(1−

2φ). At θ/(2+ q), marginal revenue less cost equals

e − (√
(1+ φ) − √

(1− φ) + φ/2√
(1+ φ) + φ/2√

(1− φ)
)
/A

+ 2Jθ(1+ q)/(2+ q)

�
(
2− 2√

(1− 2φ) − (
√

(1+ φ) − √
(1− φ) + φ/2√

(1+ φ)

+ φ/2√
(1− φ) + 0

)
/A,

which is non-negative (it equals 0 atφ = 0; and is increasing inφ). It follows thatS∗
SF �

(1 + q)S∗
NSF, so total hedging volume is (weakly) higher with spread futures. Also, s

x′ = x, hedger welfare is (weakly) higher with spread futures.�
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